Sujet de thèse et Master

Sujet de thèse

    (co-supervision with D Bresch) Propagation et adaptation dans des modèles multi-espèces : analyse de systèmes d'équations de réaction-dispersion

Sujets de Master

    Emergence de l'adapting foraging : modèle d'EDP et individus-centrés
      L'objectif de ce stage est d'étudier mathématiquement un modèle de co-évolution entre plantes et herbivores ou plus généralement entre ressources et consommateurs.
    Emergence du mutualsim chez les champignons mycchoriziens: une approche EDP
      L'objectif de ce stage est d'étudier mathématiquement l'émergence du mutualisme chez les communautés de champignons mycorhiziens.

Enseignements

Western Canada Math Biology Spring Workshop (2022)

    Reaction–dispersion models in ecology and evolution -- Adaptation to changing environments

    Environmental changes threaten many species and ecosystems. To assess their impacts, we use a mathematical approach based on reaction dispersion models. The first aim of my lecture is to derive relevant mathematical models with biological interpretation at different spatial and ecological scales (from individuals to metapopulations). Secondly, I will present classical and recent mathematical tools to quantify the ecological and evolutionary adaptation of species to environmental changes.

    In the first part, I will present a recent approach based on the interior dynamics of stationary states, to understand the effect of migration on survival and genetic diversity in a source-sink model. In the second part, I will investigate the effect of spatial propagation on survival and genetic diversity. First, I will derive the reaction dispersion model from the individual based model of movement. Then I will present classical and recent results on spreading phenomena in the framework of reaction-dispersion equations. I will then extend the interior dynamics approach to these models. Finally, I will discuss evolutionary adaptation of a population structured by a phenotypic trait under a changing environment. I will derive a PDE model from a stochastic model and, using the Hamilton-Jacobi approach and large deviation techniques, I will present some approximations of these models. Then, I will present a new approach to track ancestral lineages in quantitative genetic model.

Master Mathématiques et Applications, Univ Savoie Mont-Blanc (2017-)

    MATH702 - Modélisation mathématique et calcul scientifique
  • Notes de cours
  • TP1 - Inférence de paramètres, modèle matriciel et modèle logistique
  • TP2 - Modèle logistique discret et continu et chaos
  • TP3 - Schéma d'Euler
    MATH703 - Martingales et Chaînes de Markov
  • Notes de cours
  • TDs
  • TP1 - Martingales et Chaînes de Markov
  • TP2 - Martingales et Chaînes de Markov
  • Master Science in Industrial and Applied Mathematics, Univ Grenoble-Alpes (2015-2016)

      Mathematical modeling in life science

    Groupe de Lecture, ENS Lyon (2015)

      Reaction-diffusion equations in ecology